Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
My PlannerExplore and compare past grades, professor ratings, and reviews to find the perfect class.
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
Not teaching in Spring 2026 | |||||
SCI 5339 (Overall) | |||||
SCI 5339 Vinita Hajeri | |||||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
Not teaching in Spring 2026 | |||||
SCI 5339 (Overall) | |||||
SCI 5339 Vinita Hajeri | |||||
Practical Approaches in Genetics
SCI 5339
School of Natural Sciences and Mathematics
This graduate course is designed to cover key concepts and laboratory techniques in the field of Genetics. Students will analyze genetic model systems, such as Planaria, Drosophila, Caenorhabditis elegans, and Zebrafish, and their applications in the context of constructing understanding of essential biological processes that are not only interesting, but also often relevant to human health and welfare issues. The experiments conducted in the course will examine basic principles of genetic model systems, transmission genetics, cytological genetics, and molecular genetics. This exploratory experience will focus on both concepts in genetics and the basic culturing, genetic manipulation, and phenotypic analysis techniques necessary to utilize genetic model organisms in investigations of stem cells, cell division, modes of inheritance, genetic mutations, and much more. Throughout this inquiry-based course participants will be given "Discussion Questions" to ponder in which there may not be right or wrong answers for the purpose of examining the creative and discovery aspect of science. Critical thinking, metacognition, and reflections on the relevance of practical experience with model organisms in the teaching and learning of genetics will be emphasized throughout the course. Department consent required. 3 credit hours.
Offering Frequency: Every two years
This professor/course combination hasn't been taught in the semesters you selected. To see more grade data, try changing your filters.
Grades: 0
Median GPA: None
Mean GPA: None
Click a checkbox to add something to compare.
Practical Approaches in Genetics
SCI 5339
School of Natural Sciences and Mathematics
This graduate course is designed to cover key concepts and laboratory techniques in the field of Genetics. Students will analyze genetic model systems, such as Planaria, Drosophila, Caenorhabditis elegans, and Zebrafish, and their applications in the context of constructing understanding of essential biological processes that are not only interesting, but also often relevant to human health and welfare issues. The experiments conducted in the course will examine basic principles of genetic model systems, transmission genetics, cytological genetics, and molecular genetics. This exploratory experience will focus on both concepts in genetics and the basic culturing, genetic manipulation, and phenotypic analysis techniques necessary to utilize genetic model organisms in investigations of stem cells, cell division, modes of inheritance, genetic mutations, and much more. Throughout this inquiry-based course participants will be given "Discussion Questions" to ponder in which there may not be right or wrong answers for the purpose of examining the creative and discovery aspect of science. Critical thinking, metacognition, and reflections on the relevance of practical experience with model organisms in the teaching and learning of genetics will be emphasized throughout the course. Department consent required. 3 credit hours.
Offering Frequency: Every two years
This professor/course combination hasn't been taught in the semesters you selected. To see more grade data, try changing your filters.
Grades: 0
Median GPA: None
Mean GPA: None
Click a checkbox to add something to compare.