Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
My PlannerExplore and compare past grades, professor ratings, and reviews to find the perfect class.
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
MECH 6357 (Overall) | |||||
MECH 6357 Lev Gelb | |||||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
MECH 6357 (Overall) | |||||
MECH 6357 Lev Gelb | |||||
Phase Transformations and Kinetic Processes in Materials
Erik Jonsson School of Engineering and Computer Science
This course covers diffusion, interfacial motion, nucleation, precipitation, order-disorder transitions, phase transformations, and dynamical processes at grain boundaries and on surfaces. Both macroscopic and atomic-scale approaches are used to understand these phenomena. Particular applications considered include phase transformations in bulk materials, surface evolution and thin-film growth, semiconductor processing, and nanomaterials synthesis. 3 credit hours.
Prerequisites: (MECH 5300 and MSEN 5310) or equivalents.
Offering Frequency: Every two years
This professor/course combination hasn't been taught in the semesters you selected. To see more grade data, try changing your filters.
Grades: 0
Median GPA: None
Mean GPA: None
Click a checkbox to add something to compare.
Phase Transformations and Kinetic Processes in Materials
Erik Jonsson School of Engineering and Computer Science
This course covers diffusion, interfacial motion, nucleation, precipitation, order-disorder transitions, phase transformations, and dynamical processes at grain boundaries and on surfaces. Both macroscopic and atomic-scale approaches are used to understand these phenomena. Particular applications considered include phase transformations in bulk materials, surface evolution and thin-film growth, semiconductor processing, and nanomaterials synthesis. 3 credit hours.
Prerequisites: (MECH 5300 and MSEN 5310) or equivalents.
Offering Frequency: Every two years
This professor/course combination hasn't been taught in the semesters you selected. To see more grade data, try changing your filters.
Grades: 0
Median GPA: None
Mean GPA: None
Click a checkbox to add something to compare.