Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
My PlannerExplore and compare past grades, professor ratings, and reviews to find the perfect class.
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Grades:
Median GPA:
Mean GPA:
5.0
Professor rating
5.0
Difficulty
1,000
Ratings given
99%
Would take again
Visit Rate My Professors
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
Not teaching in Spring 2026 | |||||
MECH 6351 Dong Qian | |||||
A | |||||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
Not teaching in Spring 2026 | |||||
MECH 6351 Dong Qian | |||||
A | |||||

Grades: 524
Median GPA: A-
Mean GPA: 3.502
4.4
Professor rating
3.1
Difficulty
9
Ratings given
100%
Would take again
Finite Element Techniques I
MECH 6351
Erik Jonsson School of Engineering and Computer Science
This course will provide an overview on the basic theory of the finite element methods (FEM) and application of FEM analysis in solid mechanics. Course topics include 1D elements and computational procedures, variational principles and Rayleigh-Ritz method, Galerkin finite element method, numerical discretization, imposition of constraints, 2D elements and basic programing steps, finite element solution techniques, application of FEM for vibration analysis, and use of commercial FEM codes. 3 credit hours.
Prerequisite: MECH 2320 or equivalent.
Offering Frequency: Each year
Grades: 184
Median GPA: A
Mean GPA: 3.664
Click a checkbox to add something to compare.

Grades: 524
Median GPA: A-
Mean GPA: 3.502
4.4
Professor rating
3.1
Difficulty
9
Ratings given
100%
Would take again
Finite Element Techniques I
MECH 6351
Erik Jonsson School of Engineering and Computer Science
This course will provide an overview on the basic theory of the finite element methods (FEM) and application of FEM analysis in solid mechanics. Course topics include 1D elements and computational procedures, variational principles and Rayleigh-Ritz method, Galerkin finite element method, numerical discretization, imposition of constraints, 2D elements and basic programing steps, finite element solution techniques, application of FEM for vibration analysis, and use of commercial FEM codes. 3 credit hours.
Prerequisite: MECH 2320 or equivalent.
Offering Frequency: Each year
Grades: 184
Median GPA: A
Mean GPA: 3.664
Click a checkbox to add something to compare.