Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
My PlannerExplore and compare past grades, professor ratings, and reviews to find the perfect class.
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
MATH 6322 (Overall) | |||||
A | |||||
MATH 6322 Nan Wu | |||||
A | |||||
Not teaching in Spring 2026 | |||||
MATH 6322 Viswanath Ramakrishna | |||||
A | |||||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
MATH 6322 (Overall) | |||||
A | |||||
MATH 6322 Nan Wu | |||||
A | |||||
Not teaching in Spring 2026 | |||||
MATH 6322 Viswanath Ramakrishna | |||||
A | |||||
Mathematical Foundations of Data Science
MATH 6322
School of Natural Sciences and Mathematics
Mathematics of data science and machine learning, clustering algorithms, principal component analysis, perceptrons and support vector machines, convex optimization, ordinary and stochastic gradient descent, kernel based learning, large deviation inequalities and PAC learning, feedforward neural networks, and backpropagation. 3 credit hours.
Prerequisites: (MATH 2418 or equivalent and MATH 2415 or equivalent) and instructor consent required.
Offering Frequency: Each year
Grades: 142
Median GPA: A
Mean GPA: 3.684
Click a checkbox to add something to compare.
Mathematical Foundations of Data Science
MATH 6322
School of Natural Sciences and Mathematics
Mathematics of data science and machine learning, clustering algorithms, principal component analysis, perceptrons and support vector machines, convex optimization, ordinary and stochastic gradient descent, kernel based learning, large deviation inequalities and PAC learning, feedforward neural networks, and backpropagation. 3 credit hours.
Prerequisites: (MATH 2418 or equivalent and MATH 2415 or equivalent) and instructor consent required.
Offering Frequency: Each year
Grades: 142
Median GPA: A
Mean GPA: 3.684
Click a checkbox to add something to compare.