Grades:
Median GPA:
Mean GPA:
Click a checkbox to add something to compare.
Search Results
Name | Grades | Rating |
---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ |
Grades:
Median GPA:
Mean GPA:
Click a checkbox to add something to compare.
Search Results
Name | Grades | Rating |
---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ |
Time Series Analysis II
EPPS 7371
School of Economic, Political and Policy Sciences
This course introduces intermediate and advanced methods for the analysis of social science time series data. After reviewing core time series concepts such as stationarity and cointegration, the course considers topics such as vector autoregression and vector error correction models, simultaneous equation and structural time series models, regime switching models, non-Gaussian and nonlinear models, and state space representations. Both frequentist and Bayesian approaches to modeling time series processes are employed. Data analyses are implemented using widely available software packages such as R, RATS and Stata. 3 credit hours.
Prerequisite: EPPS 7370 or instructor consent required.
Offering Frequency: Based on student interest and instructor availability
Grades: 23
Median GPA: A
Mean GPA: 3.870
Click a checkbox to add something to compare.
Time Series Analysis II
EPPS 7371
School of Economic, Political and Policy Sciences
This course introduces intermediate and advanced methods for the analysis of social science time series data. After reviewing core time series concepts such as stationarity and cointegration, the course considers topics such as vector autoregression and vector error correction models, simultaneous equation and structural time series models, regime switching models, non-Gaussian and nonlinear models, and state space representations. Both frequentist and Bayesian approaches to modeling time series processes are employed. Data analyses are implemented using widely available software packages such as R, RATS and Stata. 3 credit hours.
Prerequisite: EPPS 7370 or instructor consent required.
Offering Frequency: Based on student interest and instructor availability
Grades: 23
Median GPA: A
Mean GPA: 3.870
Click a checkbox to add something to compare.
Search Results
Name | Grades | Rating |
---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ |
Search Results
Name | Grades | Rating |
---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ |