Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
My PlannerExplore and compare past grades, professor ratings, and reviews to find the perfect class.
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Grades:
Median GPA:
Mean GPA:
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Search Results
| Name | Grades | Rating |
|---|---|---|
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
A+ | ||
Introduction to Machine Learning
CS 4375
Erik Jonsson School of Engineering and Computer Science
Algorithms for creating computer programs that can improve their performance through learning. Topics include: cross-validation, decision trees, neural nets, statistical tests, Bayesian learning, computational learning theory, instance-based learning, reinforcement learning, bagging, boosting, support vector machines, Hidden Markov Models, clustering, and semi-supervised and unsupervised learning techniques. 3 credit hours.
Prerequisites: (CS 3341 or SE 3341 or (Data Science major and STAT 3355)) and (CE 3345 or CS 3345 or SE 3345) or equivalent.
Offering Frequency: Each year
Grades: 4,442
Median GPA: B+
Mean GPA: 3.234
Click a checkbox to add something to compare.
Introduction to Machine Learning
CS 4375
Erik Jonsson School of Engineering and Computer Science
Algorithms for creating computer programs that can improve their performance through learning. Topics include: cross-validation, decision trees, neural nets, statistical tests, Bayesian learning, computational learning theory, instance-based learning, reinforcement learning, bagging, boosting, support vector machines, Hidden Markov Models, clustering, and semi-supervised and unsupervised learning techniques. 3 credit hours.
Prerequisites: (CS 3341 or SE 3341 or (Data Science major and STAT 3355)) and (CE 3345 or CS 3345 or SE 3345) or equivalent.
Offering Frequency: Each year
Grades: 4,442
Median GPA: B+
Mean GPA: 3.234
Click a checkbox to add something to compare.
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
CS 4375 (Overall) | |||||
B+ | |||||
CS 4375 Feng Chen | |||||
A- | |||||
CS 4375 Xinya Du | |||||
A- | |||||
CS 4375 Rishabh Iyer | |||||
B+ | |||||
CS 4375 Anurag Nagar | |||||
A- | |||||
CS 4375 Tahrima Rahman | |||||
B | |||||
Not teaching in Spring 2026 | |||||
CS 4375 Anjum Chida | |||||
A- | |||||
CS 4375 Ignacio de Jesus Segovia Dominguee | |||||
A | |||||
CS 4375 Gity Karami | |||||
A | |||||
CS 4375 Latifur Khan | |||||
A- | |||||
CS 4375 Ziaullah Khan | |||||
A- | |||||
CS 4375 Karen Mazidi | |||||
B | |||||
CS 4375 Richard Min | |||||
CS 4375 Sriraam Natarajan | |||||
B+ | |||||
CS 4375 Yu Chung Ng | |||||
B | |||||
CS 4375 Erick Skorupa Parolin | |||||
B | |||||
CS 4375 Nicholas Ruozzi | |||||
B- | |||||
CS 4375 Wei Yang | |||||
A- | |||||
Search Results
| Name | Grades | Rating | |||
|---|---|---|---|---|---|
CS 4375 (Overall) | |||||
B+ | |||||
CS 4375 Feng Chen | |||||
A- | |||||
CS 4375 Xinya Du | |||||
A- | |||||
CS 4375 Rishabh Iyer | |||||
B+ | |||||
CS 4375 Anurag Nagar | |||||
A- | |||||
CS 4375 Tahrima Rahman | |||||
B | |||||
Not teaching in Spring 2026 | |||||
CS 4375 Anjum Chida | |||||
A- | |||||
CS 4375 Ignacio de Jesus Segovia Dominguee | |||||
A | |||||
CS 4375 Gity Karami | |||||
A | |||||
CS 4375 Latifur Khan | |||||
A- | |||||
CS 4375 Ziaullah Khan | |||||
A- | |||||
CS 4375 Karen Mazidi | |||||
B | |||||
CS 4375 Richard Min | |||||
CS 4375 Sriraam Natarajan | |||||
B+ | |||||
CS 4375 Yu Chung Ng | |||||
B | |||||
CS 4375 Erick Skorupa Parolin | |||||
B | |||||
CS 4375 Nicholas Ruozzi | |||||
B- | |||||
CS 4375 Wei Yang | |||||
A- | |||||